Mixed Treatment Comparisons (MTC)
– Concepts and Problems –

Ralf Bender, Sibylle Sturtz
Institute for Quality and Efficiency in Health Care (IQWiG), Cologne

Disclosures

No relationships to disclose
Introduction

Idea

- Indirect comparison: IC
- Effect of intervention C relative to B: $d_{BC} = d_{AC} - d_{AB}$
- Mixed treatment comparison (MTC) meta-analysis
 (Also called: Multiple treatment meta-analysis, Network meta-analysis)

$Lu \ & \ Ades, \ JASA \ 2006$
Introduction

Reasons for MTC

- For many clinical indications there are often several possible interventions
- Combined analysis of all relevant data is to be preferred for health care decisions

Problems solved by MTC

- Direct comparisons between active interventions A and B may not always be available
- Even if direct evidence is available, there may be only a few studies
- Direct evidence from separate pairwise comparisons cannot determine which of several interventions is most effective

Example: Thrombolysis

Boland et al., HTA 2003

6 treatments for acute myocardial infarction:
1. Streptokinase (SK)
2. Tissue plasminogen activator (t-PA)
3. Accelerated alteplase (Acct-PA)
4. Tenecteplase (TNK)
5. Retelplase (r-PA)
6. SK+t-PA

14 studies, 15 possible pairwise comparisons
Introduction

Thrombolysis: Results from Boland et al. (*HTA*, 2003)

- Pairwise comparisons performed by applying usual meta-analyses

 "... SK is as effective as t-PA ..."
 "... TNK is as effective as Acct-PA ..."
 "... r-PA is at least as effective as SK ..."

- "... SK is as effective as, or inferior to Acct-PA ..."
 "... r-PA is as effective as Acct-PA or not ..."

- "... two further questions on indirect comparisons arise, whether TNK is superior to SK or not and whether r-PA is as effective as TNK or not ..."

Introduction

Results Thrombolysis (MTC FE model)

<table>
<thead>
<tr>
<th></th>
<th>direct</th>
<th>SK</th>
<th>t-PA</th>
<th>Acct-PA</th>
<th>SK+t-PA</th>
<th>r-PA</th>
<th>TNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK</td>
<td></td>
<td>**</td>
<td>1,00</td>
<td>0,87</td>
<td>0,96</td>
<td></td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0,94; 1,06)</td>
<td></td>
<td></td>
<td>(0,79; 1,12)</td>
</tr>
<tr>
<td>t-PA</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acct-PA</td>
<td></td>
<td>0,86</td>
<td>0,97</td>
<td>1,11</td>
<td>**</td>
<td>1,02</td>
<td>1,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK + t-PA</td>
<td></td>
<td>0,96</td>
<td>0,97</td>
<td>1,04</td>
<td>0,94</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>r-PA</td>
<td></td>
<td>0,91</td>
<td>1,01</td>
<td>0,91</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNK</td>
<td></td>
<td>0,87</td>
<td>0,88</td>
<td>1,01</td>
<td>0,91</td>
<td>0,97</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0,74; 1,00)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Consistent
- Possibly with narrower credibility intervals
- Additional information (indirect comparisons)
Introduction

Probability of treatment x being best

<table>
<thead>
<tr>
<th>Treatment x</th>
<th>35 day mortality (%)</th>
<th>P(best)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) SK</td>
<td>6,5</td>
<td>0,0 %</td>
</tr>
<tr>
<td>(2) t-PA</td>
<td>6,4</td>
<td>0,0 %</td>
</tr>
<tr>
<td>(3) Acct-PA</td>
<td>5,6</td>
<td>40,0 %</td>
</tr>
<tr>
<td>(4) SK + t-PA</td>
<td>6,2</td>
<td>1,0 %</td>
</tr>
<tr>
<td>(5) r-PA</td>
<td>5,8</td>
<td>15,0 %</td>
</tr>
<tr>
<td>(6) TNK</td>
<td>5,6</td>
<td>43,0 %</td>
</tr>
</tbody>
</table>

Indirect comparisons are of increasing popularity

Schöttker et al., DIMDI 2009
Naive Approaches

Unadjusted indirect comparisons

- Meta-analysis using data of single arms:
 - MA using all data for intervention A,
 - MA using all data for intervention B,
 - MA using all data for intervention C, ...
- Breaks randomisation
- Should never be used!
- A correct analysis has to be based on the estimated effects of each RCT

Bucher Approach

Simple adjusted indirect comparison

- No direct evidence available
- One mutual comparator
- On log-odds scale:
 \[
 \hat{d}_{BC} = \hat{d}_{AC} - \hat{d}_{AB}
 \]
 \[
 \text{Var}(\hat{d}_{BC}) = \text{Var}(\hat{d}_{AC}) + \text{Var}(\hat{d}_{AB})
 \]
- Assumes independence of pairwise comparisons
- Extensions available for several direct comparisons linked by common comparators (‘ladder’ design)
- Not applicable for more complex networks

Bucher et al., JCE 1997
Wells et al., CADTH 2009
Frequentist Network Approaches
White et al., RSM 2012

Frequentist network meta-analysis

- Combination of direct and indirect evidence in a complete network
- At least one closed loop required
- Original approach by Lumley (2002) only for 2-arm trials
- Extended by White et al. (2012) to situation of multi-arm trials
- Computations: Any software for linear mixed models can be used (SAS, R, Stata etc.)

Bayesian Network Approaches
Lu & Ades, JASA 2006

Mixed treatment comparison (MTC) meta-analysis

- Also called: Multiple treatment meta-analysis, network meta-analysis
- Combination of direct and indirect evidence in a complete network
- Applicable in all kinds of (connected) networks
- Can be applied to multi-armed trials
- Study level covariates can be incorporated
- Most flexible approach
- Bayesian approach requires specification of prior distributions
Bayesian Network Approaches

Lu & Ades, JASA 2006

Models for MTC: Basic & Functional Parameters

Take A as reference treatment

Treatment effects of B,C,D relative to A:

Basic parameters with priors

\[d_{Ak} \sim N(0,10000) \quad k=B,C,D \]

Remaining contrasts: Functional parameters:

\[
\begin{align*}
 d_{BC} &= d_{AC} - d_{AB} \\
 d_{BD} &= d_{AD} - d_{AB} \\
 d_{CD} &= d_{AD} - d_{AC}
\end{align*}
\]

Fixed effects (FE) model

For intervention k in study j:

\[r_{jk} \sim \text{Bin}(p_{jk}, n_{jk}) \]

\[
\begin{align*}
 \text{logit}(p_{jk}) &= \left\{
 \begin{array}{ll}
 \mu_{jb} & \text{if } b = A, B, C \quad \text{if } k = b \\
 \mu_{jb} + d_{bk} & \text{if } k \text{ 'after' } b
 \end{array}
 \right.
\end{align*}
\]

Functional p.

\[d_{bk} = d_{Ak} - d_{Ab} \]

Basic p.

\[d_{Ak} \sim N(0,10000) \quad k=B,C,D \]

\[\mu_{jb} \sim N(0,10000) \]
Random effects (RE) model

For intervention k in study j:

\[
\text{logit}(p_{jk}) = \begin{cases}
\mu_{jb} & \text{if } k = b \\
\mu_{jb} + \delta_{jk} & \text{if } k \ 'after' \ b \end{cases}
\]

\[\mu_{jb} \; \text{study specific effect of } b\]

Functional p.

\[\delta_{jk} \sim N(d_{bk}, \sigma^2) \sim N(d_{Ak} - d_{Ab}, \sigma^2)\]

Basic p.

\[d_{Ak} \sim N(0,10000) \quad k=B,C,D\]

\[\mu_{jb} \sim N(0,10000)\]

Bayesian Network Approaches

Computations: WinBUGS

- **NICE Decision Support Unit:**

- **Multi-Parameter Evidence Synthesis Research Group**
 http://www.bris.ac.uk/social-community-medicine/projects/mpes/mtc/

WinBUGS Code for MTC meta-analyses:

- FE model
- RE model for 2- and 3-arm trials
- RE model for multi-arm trials
Basic Assumptions

Basic assumptions for IC and MTC
Song et al., BMJ 2009

- **Similarity assumption:**
 Trials are similar concerning moderators of the relevant treatment effect

- **Homogeneity assumption:**
 Trials are sufficiently homogeneous to be quantitatively combined

 ➞ Same assumptions as for usual pairwise MA

- **Consistency assumption:**
 Direct and indirect evidence estimate the same effect

Adequate MTC

- **Definition of relevant interventions**
 - Primary interventions
 - Comparators
 - Connecting interventions

- **Information retrieval**
 - Systematic literature search
 - Network may be never "complete"

- **Assessment of assumptions**
 - Similarity: PICO for the whole network
 - Homogeneity: Pairwise meta-analyses (forest plot, I^2, Q)
 - Consistency: In the framework of MTC meta-analysis
Basic Assumptions

Assessing similarity

- **Similarity assumption:** Comparability of studies regarding possible effect modifiers across all interventions
- **PICO for the whole network**
- **Subjective evaluation of study characteristics**
- **Subgroup analyses**
- **Meta-regression**

Song et al., BMJ 2009

Basic Assumptions

Assessing homogeneity

- **Homogeneity assumption:** Sufficient homogeneity of effect estimates across all studies comparing interventions
- **Assessment of homogeneity in each pairwise meta-analysis**
- **Forest plots**
- **Tests for heterogeneity: Cochrans’ Q**
- **Measures for heterogeneity: τ^2, I^2**
Basic Assumptions

Assessing consistency

- Consistency assumption: Comparability of effect estimates from direct and indirect evidence
- Assessment of consistency within MTC meta-analysis
- Tests for inconsistency
- Models containing inconsistency parameters
- Graphical approaches
- No clear standard yet!

Problems: Example

Possible networks

Direct comparison

A

B
Example
Possible networks

MTC incl. placebo arms
Placebo

A
B

Example
Possible networks

MTC incl. drug classes
Placebo
drug class C
drug class D

A
B

F
E

Example
Possible networks

Placebo

MTC incl. all drugs sep.

drug class C

drug class D

Example 1
Possible networks

OR [95% CI]

Direct comparison 1.33 [0.93; 1.91]
MTC incl. placebo arms 1.10 [0.89; 1.35]
MTC incl. drug classes 1.14 [0.96; 1.35]
MTC incl. all drugs sep. 1.12 [0.93; 1.33]

Random effects MTC
Example 2
Possible networks

OR [95% CI]

Direct comparison 0.77 [0.46; 1.28]
MTC incl. placebo arms 1.02 [0.74; 1.37]
MTC incl. drug classes 1.07 [0.90; 1.28]
MTC incl. all drugs sep. 1.09 [0.89; 1.32]

Random effects MTC

Definition of relevant interventions

Unsolved issues of mixed treatment comparison meta-analysis: network size and inconsistency
Sibylle Sturtza,\dag and Ralf Bendera,b

Impact of network size:
Larger networks are based upon more evidence but have more potential for heterogeneity and inconsistency
Results of different networks may or may not differ

- CI width in general smaller in large networks – but not always!
- Claim of inclusions of "all relevant evidence" represents an unworkably vague phrase (Cooper et al., Value Health 2011)
- Literature search for a "complete" evidence base may be a never ending story
- Network size connected with consistency
Inconsistency

Methods used to investigate inconsistency

- Test for inconsistency
 (Bucher et al., JCE 1997; Caldwell et al., JCE 2010)

- Graphical approach:
 Leverage vs. Bayesian deviance residuals

Example

![Test for consistency based on Bucer’s approach:](image)

\[
\mathbf{z}_{BC} = \frac{\hat{\omega}_{BC}}{\sqrt{\text{Var}(\hat{\omega}_{BC})}} \sim N(0,1)
\]

with

\[
\hat{\omega}_{BC} = \hat{d}_{BC}^{\text{direct}} - \hat{d}_{BC}^{\text{indirect}}
\]

and

\[
\text{Var}(\hat{\omega}_{BC}) = \text{Var}_{BC}^{\text{direct}} + \text{Var}_{BC}^{\text{indirect}}
\]

\[
= \text{Var}_{BC}^{\text{direct}} + \text{Var}_{AB}^{\text{direct}} + \text{Var}_{AC}^{\text{direct}}
\]

<table>
<thead>
<tr>
<th>Direct</th>
<th>Placebo</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.99</td>
<td>[1.65; 2.39]</td>
</tr>
<tr>
<td>B</td>
<td>2.04</td>
<td>[1.74; 2.38]</td>
</tr>
</tbody>
</table>

Bucher et al., JCE 1997

Caldwell et al., JCE 2010
Example

Inconsistency

<table>
<thead>
<tr>
<th></th>
<th>All studies (MTC)</th>
<th>Placebo</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.93 [1.61; 2.29]</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>1.10 [0.89; 1.35]</td>
</tr>
<tr>
<td>B</td>
<td>2.11 [1.82; 2.44]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Leverage Plot
- Curves of form $x^2+y=c$, $c=1,2,3,4$

Inconsistency

<table>
<thead>
<tr>
<th>Direct</th>
<th>Placebo</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.99 [1.65; 2.39]</td>
<td>p=0.466</td>
</tr>
<tr>
<td>B</td>
<td>2.04 [1.74; 2.38]</td>
<td>1.33 [0.93; 1.91]</td>
</tr>
</tbody>
</table>

Example

Inconsistency

<table>
<thead>
<tr>
<th></th>
<th>Without No. 4+32</th>
<th>Placebo</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.84 [1.58; 2.13]</td>
<td></td>
<td>1.19 [1.00; 1.42]</td>
</tr>
<tr>
<td>A</td>
<td>1.93 [1.59; 2.19]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2.19 [1.93; 2.50]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Deviance: no evidence of inconsistency
- Test for consistency n.s.
- Results for MTC and MA comparable
- A vs B: MTC smaller CI
Important Questions:

- Which network is the most appropriate?
- Is lumping of drug classes reasonable?
- Which amount of inconsistency is relevant?
- Which method is appropriate to evaluate inconsistency?
 - Graphical approach seems to be useful
 - Test for inconsistency is not reliable (for \(\alpha = 0.05 \))
- Many things are still unclear!
- More experience is required!

Problematic Issue:

- Only consistent networks should be used in practice
- All relevant evidence should be used

Challenge

Network meta-analyses should only be performed if

- Similarity assumption is sufficiently plausible
- Pairwise meta-analyses do not show relevant heterogeneity
- Network does not show relevant inconsistency

Song et al., BMJ 2011
Network meta-analyses should only be performed if

- Similarity assumption is sufficiently plausible
- Pairwise meta-analyses do not show relevant heterogeneity
- Network does not show relevant inconsistency

"This review shows that the underlying assumptions are not routinely explored or reported when undertaking indirect comparisons."

Example: ACEI/ARB in Diabetes

Reno-protective effects of renin–angiotensin system blockade in type 2 diabetic patients: a systematic review and network meta-analysis

P. Vejasana ∗ · A. Thakkinstian · D. Lertrattananon · A. Ingsathit · C. Ngarmukos · J. Attia

A network meta-analysis was performed to compare indirectly all treatment effects.

Typical problems:

- Heterogeneity in meta-analyses explored – but without consequence
- No assessment of consistency in network meta-analysis
Example: 3 types of stents

RESEARCH

Drug eluting and bare metal stents in people with and without diabetes: collaborative network meta-analysis

Christoph Stettler, senior research fellow; Sabine Allermann, research fellow; Simon Wandel, research fellow; Adrian Kuzel, professor of cardiology; Maria Dausch, professor of cardiology; Albert Schöning, professor of medicine; Matthias E. Pflueger, professor of cardiology; Gregor W. Slope, professor of medicine; Martin Reese, professor of medicine; Juval Sutker de las, professor of cardiology; Jean-Jacques Guy, professor of interventional cardiology; Seung-Jung Park, professor of cardiology; Manel Sabate, associate professor of cardiology; Maarten J. Suttorp, head of department; Henning Feilberg, associate professor of cardiology; Christian Spaundt, professor of cardiology; Maurizio Miraglia, interventional cardiologist; Paul Vermeersch, interventional cardiologist; Maurice T. Ehrlich, training fellow in cardiology; Paolo Cammika, cardiologist; Marco De Carlo, chief director; Andrea Engl, associate professor of cardiology; Tania Becher, interventional cardiologist; Paolo Orlandi, interventional cardiologist; Martin Schwer, professor of cardiology; Peter Bien, head of division; J. Bernhard Meier, professor of cardiology; Stephan Windeler, head of massive cardiology; Peter Jinsi, head of division.

BMJ

Stettler et al., BMJ 2008

3 web appendixes (17 pages in total):
- Comprehensive description of applied models
- Methods to assess goodness-of-fit, heterogeneity, inconsistency
- Description of intermediate data

IQWiG, GMDS and IBS-DR (07.03.2012):

Network meta-analyses lead to lower certainty of results compared to meta-analyses of direct head-to-head studies

http://www.gmds.de/pdf/publikationen/stellungnahmen/120302_IQWIG_GMDS_IBS_DR.pdf

Stellenwert von Ergebnissen aus indirekten Vergleichen

Gemeinsame Stellungnahme von IQWiG, GMDS und IBS-DR

Autoren: Ralf Bender, Carsten Schwenke, Claudka Schmoro, Dieter Hauschke

GMDS Geschäftsstelle

Bohnsche Bau, Innenkapelle 134
D-30661 Klein
(In-)direct comparisons

„Direct randomized comparisons of treatments are usually more trustworthy than indirect comparisons ...“

Ioannidis, CMAJ 2009

Always?

Sometimes an infinite stair
(In-)direct comparisons

Impossible figure, by M.C. Escher

Conclusions

- MTC represents an important and promising method for health technology assessment
- In practice, choice of an appropriate network required
- Only consistent networks should be used
- A network may never be "complete"
- Exclusion of a few studies may be reasonable
- Clear standards for identification of inconsistency and dealing with inconsistency are currently lacking